
Tutorial for plugin developers

Introduction

This guide is a beginners guide based on how to develop a plugin in order to
apply new operations on metabolic systems using the MetaPlab software.
This is especially dedicated to people who are interested in biological systems
and want to understand the functioning of the living cell through mathematical
models and computational tools.

Essentially the theory on which these models are based on consists of mem-
branes and multisets rewriting, in particular MP systems’ dynamic is based on
mass partition principle which defines the transformation rate of object popu-
lations according to some chemical laws.

The structure of MetaPlab is based on extensible set of plugins, written by
Java programming language, and it was thought for solving specific tasks in the
framework of MP systems, such as parameters estimation for regulative mecha-
nisms of biological networks, simulation, visualization, graphical and statistical
curve analysis, importation of biological networks from on-line databases, and
hopefully other aspects which would result to be relevant for further investiga-
tions.

How to download MetaPlab

In order to develop a new plugin for processing biological models, the developer
has firstly to download the source code from the Download section of MetaPlab
site: http://mplab.sci.univr.it. Downloaded file is a zip archive containing
all the source codes of MetaPlab. The used programming language is Java,
version 1.6. MetaPlab development group usually adopt NetBeans IDE (version
5.5. and subsequent) as a development environment.

Some useful classes to know

Before starting to create a new plugin, some fundamental classes have to be
known to understand the software architecture (Figure 1, 2, 3).

1



MPStoreExt package:

• MPStoreExt : it contains all the data related to an MP system, such as
substances, parameters, reaction, regulation functions and constants. All
these elements are contained in a MembraneExt object (Figure 3). MP-
StoreExt ensures data compatibility among all the modules of MetaPlab.
It implements the Cloneable interface and the field called extra leaves the
door open to every extension of the MP systems framework and also to
other computational models, in order to make MetaPlab a shared platform
(Figure 1, 2).

• MembraneMPExt : it is a class containing membrane’s name and descrip-
tion, model’s time unit and mole unit, and four vectors, collecting, re-
spectively, membrane’s substances, reactions, fluxes and parameters. It
implements the Cloneable interface (Figure 3);

• SubstanceExt : it is a class that describes a substance in terms of its name,
variable name (that used in flux evolution functions), mole weight. More-
over, an array called values enables to store dynamics of the substance by
means of a time-series, which may be computed by simulations or got by
experiments (Figure 3);

• ParameterExt : it is a class that describes a parameter in terms of its name,
variable name (that used in flux evolution functions), evolution function
and extra information. Moreover, an array called values enables to store
the dynamics of the parameter by means of a time-series, which may be
computed by simulations or defined by values (Figure 3). If a parameter
is defined together with its evolution function the functional field must
be set to true, while, if the parameter dynamics is defined by values, the
functional field must be set to false. In this last case periodical dynamics
can be achieved by setting the periodical field to true;

• FluxExt : it is a class that describes a flux in terms of its name, evolution
function, an extra information. An array called values enables to store
the dynamics of the flux by means of time-series, which may be computed
the Log-gain theory (Figure 3);

• ReactionExt : it is a class that describes a reaction by its name, its flux
(field called reactive unit) and two vectors of its reactants and products
(Figure 3);

• MultiplicityExt : it is the class which stores a substance involved in a re-
action with its multiplicity (Figure 3);

• ConstantMPExt : it is a class that define a constant used in the model (e.g.
π) by its name, variable name (that used in flux evolution functions), value
and measure unit (Figure 2).

2



Figure 1: MPStoreExt data structure overview

Figure 2: MPStoreExt class details

PluginExt package:

• PluginExt : it is the interface which must be implemented by every plugin.
Figure 4 shows all the methods collected by this interface. For more
information, see the code documentation;

• PluginExtAbs: it is an abstract class which implements the PluginExt
interface (5). In particular, three important fields are defined:

– inMPStoreExt : it is a vector of input MPStoreExt objects automat-
ically received from the Plugin Manager when the plugin is called;

– outMPStoreExt : it is a vector of output MPStoreExt objects auto-
matically returned to the Plugin Manager when the plugin finishes
its computation. These output can be displayed by the InputGUI or
processed by other plugins;

– caller : it refers to the object that calls the plugin.

All the methods involved in the communication between the Plugin Man-
ager and a plugin are implemented, leaving just three abstract methods
to be implemented by the plugin developer:

3



Figure 3: MembraneMPExt, SubstanceExt, parameterExt, FluxExt, Reac-
tionExt, MultiplicityExt classes details

– getName(): it has to return the name of the plugin as a String ;

– getDescription(): it has to return a description of the plugin features
as a String ;

– start(): it is automatically called by the Plugin Manager when the
user selects the plugin from the plugin list and launches it. The code
included in this method should process the input received by the
inMPStoreExt vector and store the processing data into the outMP-
StoreExt vector, to make it available to the Plugin Manager. More-
over, this method can call other methods, graphical user interfaces
and even external libraries.

The PluginExtAbs class should be extended by the plugin developer in
order to implement new plugins without wasting too much time on the
data communication between the Plugin Manager and the Plugin.

Creation and compilation of a new plugin

To create a new plugin, called for instance NewPlugin, using the integrated
development environment (IDE) NetBeans, one has to create a project called

4



Figure 4: Extract of PluginExt interface code

NewPlugin having a class NewPlugin.java inside its default package (i.e., in
the main plugin directory). This class must implement the PluginExt interface
and it is recommended that it extends the PluginExtAbs abstract class. In this
last case, indeed, all the needed data structures will be automatically inherited,
the communication between the plugin and the Plugin Manager will be suit-
ably managed and just methods getName(), getDescription() and start() will
have to be implemented, as we explained above. The NewPlugin.java header
must include the importation of packages MPStoreExt.* and PluginExt.*. For
getting a plugin example, please, download the EmptyPlugin source code from
http://mplab.sci.univr.it/plugins/Plugins.php and start to develop your own
plugin just implementing the three methods described above.

Before compiling the project, one has to set the project properties adding a
link to MetaPlab library: select the Properties of NewPlugin project and add
MetaPlab project (folder MetaPlab-devel/MetaPlab) to the project Libraries.
To add external libraries one has to remember to add the library even to the
MetaPlab project properties.

Testing the new plugin

To test a new plugin:

• compiling the plugin project obtaining a jar file,

• run the project following one of the next two steps:

– copying the jar file into the source code folder MetaPlab-devel/MetaPlab-
/PluginExt, and then running the MetaPlab project by clicking on
the run button from NetBeans;

5



Figure 5: Extract of PluginExtAbs abstract class code

– copying the jar file into the binary code folder: MetaPlab-dist/PluginExt,
and then running the MetaPlab project by clicking on MetaPlab.jar
into the MetaPlab-dist folder.

The new plugin will be automatically detected and loaded by the Plugin
Manager which will display a related entry in the plugin list. To run the new
plugin, one has to select it and click on the Run button.

Publishing the new plugin

Once a plugin has been fully tested showing interesting results, it can be pub-
lished on the Plugin section of the MetaPlab web-site. For more information,
see the instructions at the page http://mplab.sci.univr.it/plugins/Plugins.php.

6


